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termediate 0 O C r leaves a spin-paired oxygen molecule, thus a 
singlet excited state.17 Catalase, however, functions chiefly in 
the decomposition of hydrogen peroxide to molecular oxygen 
without the presence of halogen ion cofactors, and in this system, 
a bound singlet molecular oxygen is generated predominantly, 
which then radiatively decays either directly as a perturbed species 
or via an energy-transfer mechanism. 
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The electrophilic diiron methylidyne complex [(C5H5)2-
(CO)2Fe2(/u-CO)0u-CH)]+PF6- (I)1 reacts rapidly with alkenes 
by adding the methylidyne C-H bond across the C = C double 
bond to produce M-alkylidyne complexes.2 In the course of ex-
aming trie possibile reversibility of this hydrocarbation reaction, 
we found that M-alkylidyne complexes rearrange to M-alkenyl 
complexes in a reaction whose rate is extremely sensitive to the 
degree of alkyl substitution at the carbon a to the carbyne carbon. 

When the /i-pentylidyne complex [(C5Hs)2(CO)2Fe2(M-CO)-
(M-C-CH2CH2CH2CH3)I

+PF6- (2)3'4 was heated in the solid state 
or in dilute CD2Cl2 solution, no (<5%) reversal to 1-butene and 
1 was detected. Instead, upon heating to 88 0C for 29 h, solid 
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2 rearranged to the M-1-pentenyl complex [(C5Hs)2(CO)2Fe2(M-
C O ) ( M V , » ; 2 - ( £ ) - C H = C H C H 2 C H 2 C H 3 ) ] + P F 6 - ( 3 ) 4 in 89% yield 
after recrystallization.7 The rearrangement of 2 to 3 in CD2Cl2 
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at 88.0 ±0 .1 0C was followed by 1H NMR observation of the 
Cp resonances; the first-order rate constant was found to be 2.9 
± 0.5 X 10~4 s'1 which corresponds to AG* = 27.1 ± 0.2 kcal. 
Rearrangement of the related a-deuterated compound 
[(CsHs)2(CO)2Fe2(M-CO)(M-C-CD2CH2CH2CH3)]+CF3S03-
(2-rf2)

8 gave [(C5H5)2(CO)2Fe2(M-CO)(M-7,V-(£)-CD= 
D C C H 2 C H 2 C H 3 ) I + C F 3 S O 3 - (3-rf2) in which >95% of the deu­
terium was located in the vinylic sites as established by 2H NMR; 
this indicates that the net 1,2-hydride shift involves only the protons 
on the carbon a to the carbyne carbon of 2. 

The structure of 3 was established spectroscopically.4 Separate 
signals are seen for the nonequivalent C5H5 rings of 3 in the 
low-temperature 1H NMR at 8 5.83 and 5.62 and in the low-
temperature 13C NMR at 5 92.6 and 89.8; at room temperature 
a fluxional process leads to single coalesced peaks.9 The proton 
on the a-vinyl carbon of 3 appears characteristically downfield 
at S 12.06 (d, Jmm = 11.8 Hz) and the proton of the /3-vinyl carbon 
appears as a multiplet at 8 3.66. In the 13C NMR of 3, the a-
and /3-vinyl carbons appear at 8 175.4 and 96.7. Similar spectra 
for M-vinyl compounds have been observed by Pettit6 and Dyke.10 

In contrast, attempted rearrangement of the parent ethylidyne 
complex 45,6 by heating at 88 0C for 100 h gave no detectable 
isomerization (<5%) to M-vinyl complex 5 but led to 50% de­
composition. When the potential rearrangement product 56'10 was 
independently synthesized and heated at 88 0C for 20 h, no 
ethylidyne complex 4 was observed but 80% decomposition of 5 
had occurred. Apparently, an a-alkyl substituent on the M-al-
kylidyne complexes can greatly accelerate the rearrangement to 
a M-alkenyl complex. 

The possibility that two a-alkyl substituents might further 
accelerate the rearrangement of M-alkylidyne complexes to M-
alkenyl complexes caused us to reassess our interpretation of the 
reaction of 1 with 1,2-disubstituted alkenes. Earlier we had found 
that cyclohexene, cyclopentene, and cis- and trans-2-butene all 
reacted with 1 to give mixtures of M-alkylidyne complexes and 
M-alkenyl complexes. We postulated that the M-alkylidyne com­
plexes were formed by direct 1,2-addition of the CH bond of 1 
to the alkene and that the M-alkenyl complexes were formed via 
a hydrogen migration of an intermediate carbocation.1' If these 
two products rapidly interconvert either might be the initial 
product of reaction of the 1,2-disubstituted alkene with 1. 

When the 1.4:1.0 mixture of M-alkylidyne 6 and M-alkenyl 7 
complexes obtained from reaction of 1 with cyclohexene was 
heated at 88 0C in the solid state or in CD2Cl2 solution, no change 
in isomer ratio was seen. Even when partial decomposition 
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(7) The analogous [(C5Hs)2(CO)2Fe2(M-CO)(M-CCH2CH3)I
+PF6- com­

plex2 underwent a similar rearrangement to [(C5Hj)2(CO)2Fe2(M-CO)(M-
7)1,j!

2-(£,)-CH=CHCH3)]
+PF6- (84% yield, >95% conversion) upon heating 

at 88 0C for 30 h in the solid state. 
(8) 2-d2 was prepared by deuterium exchange of the vinylic protons of 8 

using CF3COOD/D20. The product 8-rf, was protonated with CF3SO3D 
yielding 2-d2 in 49% yield for the two steps. 
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(11) In contrast, 1-methylcyclohexene reacts with 1 to give a M-alkenyl 

compound via exclusive carbon migration.2 
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occurred, the 1.4:1.0 ratio of 6:7 did not change perceptibly. These 
results are consistent with a very rapid isomerization that main­
tained an equilibrium mixture of the compounds or with no 
isomerization at all as seen in the case of ^-ethylidyne complex 
4. 

Aqueous HCO3" reacts rapidly with jj-pentylidyne complex 2 
to produce the jt-pentenylidene complex 84 in 87% yield whereas 
the M-pentenyl complex 3 reacts only slowly with HCO3" over 24 
h to give the /3-hydroxy bridging carbene complex 9* in 47% yield. 
Therefore it appeared possible that a pure sample of ,u-alkenyl 
complex 7 might be obtained by selectively destroying ju-alkylidyne 
complex 6 by treatment with base. However, when the 1.4:1.0 
mixture of 6 and 7 was treated with aqueous bicarbonate, all of 
the material was rapidly converted to the same vinylidene complex 
10 which was isolated in 70% yield. The fact that both 6 and 7 
were converted to 10 is consistent with a rapid equilibration of 
6 and 7 at room temperature and selective deprotonation of 6 to 
10.12 This deprotonation reaction could prove useful for converting 
synthetically unattractivemixtures of products from the reaction 
of 1 with 1,2-disubstituted alkenes into a single organometallic 
product. 

Vinylidene complexes such as 8 are known to undergo pro-
tonation to give /i-alkylidyne complexes and not /it-alkenyl com­
pounds.6,13 When the cyclohexyl vinylidene complex 10 was 
reprotonated with HBF4-Et2O in acetone-d6 at -70 0C, only the 
BF4" salt of the cyclohexyl-substituted carbyne complex 6 was 
observed by 1H NMR. Upon warming to -13 0C, pure 6 was 
converted to a 1.4:1.0 equilibrium mixture of 6:7.14 The rate of 
rearrangement of 6 to 7 was measured by 1H NMR observation 
of the Cp resonances; the first-order rate constant for conversion 
of 6 to an 1.4:1 equilibrium mixture of 6:7 was found to be kt = 
2.4 ± 1.0 X 10~4 s"1. The rate constant for conversion of 6 to 7 
is given by k = ke(\ + K^)'1 = 1.0 ± 0.4 X 10"4 s"1, which 
corresponds to AG* = 19.9 ± 0.3 kcal. Since we now know that 
the ji-alkylidyne and /x-alkenyl products 6 and 7 rapidly equilibrate, 
additional experiments will be required to determine the nature 
of the kinetic product from the reaction of 1 with 1,2-disubstituted 
alkenes. 

The rate of rearrangement of //.-alkylidyne complexes to the 
corresponding jt-alkenyl complexes is increased dramatically by 
carbon substituents on the carbon a to the carbyne carbon. Thus, 
4 with no a-carbon substituents does not rearrange at 88 0C (AG* 
^ 31.0 kcal), 2 with one a-carbon substituent rearranges slowly 
at 88 0C (AG* = 27.1 ± 0.2 kcal), and 6 with two a-carbon 
substituents rearranges rapidly at -13 0C (AG* = 19.9 ± 0.3 kcal). 
This reactivity pattern suggests the buildup of positive charge at 
the carbon a to the carbyne carbon at the transition state for 
rearrangement; a transition state such as 11 is consistent with this 
reactivity pattern. 
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reaction of c;'j-2-butene with 1 gave complete conversion to (C5H5)2-
(CO)2Fe2(M-CO)(M-C=C(CH3)CH2CHj), which was isolated in 58% yield. 
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Although various catalysts based on cyclodextrin binding 
groups4 have been successful as enzyme mimics, it is obviously 
desirable to generalize them by using synthetic binding cavities. 
A number of macrocycles have been prepared that exhibit hy­
drophobic properties; of these, the systems such as 1, described 
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by Koga5 (based on earlier work by Stetter6) are particularly 
attractive because an X-ray structure determination5 shows that 
a bound substrate, durene, is indeed located in the cavity. Since 
1 dissolves and binds small hydrophobic molecules only in strong 
acid solution, we have prepared its quaternary derivative7 2 and 
find that 2 binds 2,7-dihydroxynaphthalene in neutral solution 
with upfield shifting of the 1H NMR signals very similar (upfield 
shifting by 1.53, 0.48, and 1.34 ppm for H-l(8), H-3(6), and 
H-4(5), with 25 mM 2, for 12.5 mM dihydroxynaphthalene in 
neutral D2O) to those (upfield shifting by 1.36, 0.56, and 1.31 
ppm for 25 mM dihydroxynaphthalene in D20/DC1) for Koga's 
complex. The dissociation constant for binding 8-anilino-l-
naphthalenesulfonate (ANS), from a Hildebrand-Benesi plot8 of 
fluorescence at 25 0C, was 6.6 X 10"5 M for 2 in neutral H2O, 
compared with a reported 1.6 X 10"4M for 1 in acid. Thus it 
is clear that 2 also binds substrates inside its cavity. 

Similarly, we have prepared macrocycle 3, analogous to Koga's 
4, and find that ^diss is 8.4 X 10"5 M for the complex of 3 with 
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